MTH 520/622: Introduction to hyperbolic geometry Homework I

(Due 25/08)

- 1. Consider the Riemann sphere $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.
 - (a) Show that the sequence $a_n = \{1/n\}$ converges to 0, and the sequence $b_n = \{n\}$ converges to ∞ , in $\overline{\mathbb{C}}$.
 - (b) Show that if K is a closed and bounded subset of \mathbb{C} , then $(\mathbb{C} \setminus K) \cup \{\infty\}$ is open in $\overline{\mathbb{C}}$.
 - (c) Show that every open subset of $\overline{\mathbb{C}}$ is either an open subset of \mathbb{C} or is the complement in $\overline{\mathbb{C}}$ of a closed and bounded subset of \mathbb{C} .
- 2. Consider the stereographic projection $p: S^2 \setminus \{N\} \to \mathbb{C}$, where N denotes the north pole of S^2 .
 - (a) Derive explicit expressions for p and p^{-1} .
 - (b) Show that p is a homeomorphism.
 - (c) Consider the extension $\bar{p}: S^2 \to \bar{\mathbb{C}}$ of p to S^2 defined by

$$\bar{p}(x) = \begin{cases} p(x), & \text{if } x \in S^2 \setminus \{N\}, \text{ and} \\ \infty, & \text{if } x = N. \end{cases}$$

Show that \bar{p} is a homeomorphism.

3. Consider the map $r: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ idefined by

$$r(z) = \begin{cases} 1/z, & \text{if } z \in \mathbb{C}, \\ \infty, & \text{if } z = 0, \text{ and} \\ 0, & \text{if } z = \infty. \end{cases}$$

- (a) Show that r is a homeomorphism.
- (b) Describe geometrically the map $(\bar{p})^{-1} \circ r : S^2 \to S^2$.
- 4. Let $f : \mathbb{C} \to \mathbb{C}$ be a polynomial such that $\deg(f) \ge 1$, and let $g : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ be the extension of p defined by

$$g(z) = f(z)$$
, for $z \in \mathbb{C}$ and $g(\infty) = \infty$.

- (a) Show that g is continuous in $\overline{\mathbb{C}}$.
- (b) Show that $g \in \text{Homeo}(\overline{\mathbb{C}})$ iff $\deg(f) = 1$.